Study of metal organic chemical vapour deposition (MOCVD) semiconductors III-V hyperstructures with secondary ion mass spectrometry (SIMS)
J.J. Laserna, H. Téllez, J.M. Vadillo, D. Padilla. IOP Conference Series: Materials Science and Engineering, 2014, 59, 012002 – 012009
One of the most promising technologies in high efficiency solar cells is based on quaternary structures grown by epitaxial techniques as Metal Organic Chemical Vapour deposition (MOCVD). The semiconductors III-V structures are elaborated under tailored parameters, allowing the use of a broader area of the solar spectrum. Analytical techniques capable of providing accurate and precise information in cross sections about the composition and thickness of the layers are demanded. Secondary Ion Mass Spectrometry (SIMS) has been used for characterization of these structures due to its high depth resolution and sensitivity, stability and reproducibility. It was detected the diffusion process of Al and In across the cell interfaces and the layer diffusion over GaAs substrates. The Al diffusion was associated at incorrect incorporation of elements during growth process and the layer diffusion was associated at changes of manufacturing parameters. Such studies show the SIMS ability to diagnose of faults during the growth process, detection of impurities and incorrect diffusion of dopants that may affect the layer properties and the structure functionality.